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This paper presents a new approach using artificial neural networks (ANN) to predict the critical heat
flux (CHF) for a steam–water mixture through pipes. A large number of experimental measurements are
used for training and testing the developed network. The Levenberg–Marquardt algorithm was used to
train the developed feed forward ANN. The training and validation are performed with good accuracy.
The correlation coefficient obtained with unknown data applied to the network is 0.998 which is
satisfactory and verifying the fidelity of the developed network. The present methodology proved to be
much better than the traditional table and best-fit methods. Using the weights and biases obtained from
the trained network, a new formulation is proposed for determination of the CHF Qcr. Experimental
results of Qcr are compared with both the results obtained by the developed ANN based correlation and
the results obtained by a best-fit correlation. Deviations between the results are found to be less than
5.5% and 30%, respectively. The developed ANN based correlation may make use of the dedicated ANN
software unnecessary to use for each calculation time. As seen from the results obtained, the calculated
Qcr is obviously within acceptable uncertainties. This ANN based correlation can be employed with any
programming language or spreadsheet program for estimating the CHF Qcr. If the validity range changes,
the ANN based correlation can be updated in terms of new sets of weights and biases using the same
network architecture (same no. of hidden layers and no. of neurons).

� 2009 Published by Elsevier Masson SAS.
1. Introduction

The critical heat flux (CHF) is a limiting factor for most forced
convective boiling processes. CHF refers to the heat transfer limit
causing a sudden decrease in the heat transfer coefficient and
possible catastrophic failure of the device in which evaporation or
boiling is occurring. For a heat flux-controlled system, exceeding
the CHF can lead to a sudden large increase in the wall temperature,
which for most coolants, can lead to system failure. The capability
to predict the CHF is therefore of vital importance to the safety of
flow boiling process [1]. The CHF prediction in the boiling heat
transfer equipments could be useful to know the real causes of the
failures presented, like the burnout of tubes or leaks that appear as
consequence of an accelerated process of corrosion caused by the
high temperature reached in the material. However, CHF is one of
the most studied and least understood phenomenon in flow
boiling. Over 500 prediction methods for CHF exist in the literature.
The increase of CHF prediction methods indicates the lack of
understanding of CHF, and makes it difficult to choose a suitable
Elsevier Masson SAS.
CHF prediction method or correlation. Therefore, predicting CHF is
a very challenging task.

A considerable amount of information has been presented
concerning the CHF for different fluids flowing through round tubes
[1–8]. Various authors have established different techniques and
different relationships for CHF prediction. The quantitative rela-
tionship between the main variables, however, varies from one
author to another. One could wonder whether such forms, both so
unlike and involving different sets of input variables, could accu-
rately represent the same heat transfer phenomenon. This evident
discrepancy is reasonably due to the different approaches in eval-
uating the essential elements composing the initial tentative model
from which to start the functional form development.

In general, the CHF prediction can be realized in two main
different ways: collecting data into a multidimensional table (table
method) or creating a best-fit correlation (best-fit method) as
a function of the main parameters. The best-fit method based on
assuming a correlation form consists of combination of non-
dimensional numbers, which characterize some phenomenological
processes, and in fitting some adjustment coefficients. The fitting
process may be rather complex for fluids. The CHF look-up tables
[9,10] and extensive set of correlation packages [1] are good

mailto:asnafey31@yahoo.com
www.sciencedirect.com/science/journal/12900729
http://www.elsevier.com/locate/ijts


Nomenclature

d Diameter of the tube (mm), desired output (target)
g Mass flow rate kg m�2 s�1

k Number of neurons in hidden layer
l Heated length (mm)
M Number of input parameters
N Number of learning data
p Pressure (kPa)
Qcr Critical heat flux (kW m�2)
t Temperature (�C)
w Weight
wji Weight between the neurons j and i
x Vapor fraction (quality) at the outlet of the pipe
n
0
,n
00

Specific gravity of the liquid and saturated vapor,
respectively

A.S. Nafey / International Journal of Thermal Sciences 48 (2009) 2264–2270 2265
examples for the first and second methods, respectively. Tong and
Tang [1] evaluated these two methods as follows: in one hand, the
Groeneveld CHF look-up table predicts the general trend of pres-
sure p, fluid mass velocity g, steam quality by weight x, water
temperature entering t, length l, and diameter d effects well.
However, to apply the table method to reactor design, proper
adjustments for detailed geometrical effects of a prototype rod
bundle would be needed. Such adjustments are usually expressed
in empirical formulae that are as complicated as the existing CHF
design correlations. Thus, in this case the table method does not
provide much more convenience. Indeed, the table method
requires an interpolator and a difficult preliminary work of point
selection and smoothing in order to avoid meaningless irregulari-
ties induced by the data scattering. On the other hand, the CHF
prediction correlations have been developed assuming an initial
tentative model, which undergoes successive modifications to
correct discrepancies with respect to experimental results using
a ‘‘trial-and-error’’ approach. Depending on the initial structure of
the tentative model and on the criteria of the subsequent modifi-
cations the resulting correlations proposed in the literature often
present a formulism quite different from the other. In general, a CHF
correlation is accurate only in the particular flow regimes within
the ranges of the operating parameters in which it was developed.
Consequently, the application of CHF correlation should be limited
to within these ranges of parameters. A universal correlation has
not yet been developed up to now.

Modern computational capabilities and numerical optimization
techniques would make the table and best-fit methods somewhat
out of use. Recently, artificial neural network (ANN) (as one of
artificial intelligence techniques) is widely accepted as a technology
offering an alternative way to tackle complex and ill-defined
problems. ANN technique has a number of advantages such as; fault
tolerant in the sense that it is able to handle noisy and incomplete
data. ANN can learn from examples, and deal with non-linear
problems. Also, ANN has large degree of freedom, ease of use (no
fluid properties are needed) ease of updating and accurate pre-
dictin at very high speed. ANN are systems of weight and biases
vectors, whose component values are established through various
machine-learning algorithms, which take as input a linear set of
pattern inputs and produce as output a numerical pattern repre-
senting the actual output. ANNs mimic somewhat the learning
process of a human brain. Instead of complex rules and mathe-
matical routines, ANNs are able to learn key information patterns
within a multi-information domain. ANNs differ from the tradi-
tional modeling approaches in that they are trained to learn
solutions rather than being programmed to model a specific
problem in the normal way [11].

ANN has been applied successfully in various fields of mathe-
matics, medicine, economics, meteorology, psychology, neurology,
and many others. ANNs have been used in many engineering
applications such as in control systems, in classification, and in
modeling complex process transformations [11–14,15].

The ANN methodology enables us to design useful nonlinear
systems accepting large numbers of input, with the design based
solely on instances of input–output relationships and has proved
that it is a very powerful and efficient tool to analyze different heat
transfer processes. Thus, ANN can be used as a predictor of CHF
based on the available database without knowing their best-fit
correlations due to ANN’s black-box characteristic. However,
although the ANNs can perform quite well for interpolation
between patterns that have been used during the learning phase,
they are poor in extrapolating. Thus, one has to strive to collect
experimental data as much as possible in order to train the ANN in
which all parameters that have effects on CHF will be considered
within a wide parameter range.

It is important to note that if the validity range changes,
development of traditional correlations such as Eq. (1) [16] will
require much effort. Updating of the constant coefficients of the
correlation may not be sufficient and structure of the correlation
may be altered altogether. However, ANN based correlation can be
updated in terms of new sets of weights and biases using the same
architecture (same no. of hidden layers and no. of neurons) reliably
with new plant data by training, validation, and testing using the
plant automation software.

Qcr ¼ 40ðgÞnð1� xÞm
�
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n ¼ 0:56� 0:0189
n0

n00

m ¼ 0:7
n0

n00
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n00

n0
� 0:45x

In this study, the artificial neural networks approach is applied to
develop an ANN based correlation for estimating the CHF (Qcr)
(kcal/m2 h) for flow of steam–water mixtures (saturated poling
conditions) through pipes for given outlet pressure p (atm),
entering water temperature t (�C), steam quality by weight x, mass
velocity of the steam–water mixture g (kg/m2 h), pipe length l
(mm), wall thickness d (mm), and the pipe diameter d (mm). The
output is the Qcr of the flowing water–steam mixture. The ultimate
objective is to use this correlation within the boiling heat transfer
equipment modeling and optimization framework in the future.
2. Artificial neural networks approach

Neural networks operate much as a ‘‘black-box’’ model requiring
no detailed information about the system. On the other hand, they
learn the relationship between the input and the target. The
network usually consists of an input layer, some hidden layers, and
output layer. For a given set of inputs, ANNs are able to produce
a corresponding set of outputs according to some mapping rela-
tionships. These relationships are encoded into the network
structure during the training process (also called learning), and are
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dependant upon the parameters of the network, i.e. weights and
biases which are iteratively adjusted in order to produce the
nearest output to the desired target (experimental data) of the
network [17].

Among the various kinds of ANNs that exist, the feed forward
neural network has become the most popular in engineering
applications [17], and it is the type being used in this article. The
network is somewhat simple in structure and easily mathemati-
cally analyzed. The back propagation (BP) technique is the first
and most commonly used feed forward neural network because
of its mathematical strict learning scheme to train the network
and guarantee mapping between inputs and outputs [18]. ANNs
consisting of very simple and highly interconnected processors
called neuron. These processors are analogous to biological
neurons in human brain. A typical feed forward architecture is
schematically illustrated in Fig. 1. This configuration has one input
layer, one hidden layer and one output layer. During the feed
forward stage, a set of input data is supplied to the input nodes
(neurons) and the information is transferred forward through the
network to the nodes in the output layer. The nodes perform non-
linear input–output transformations by means of selected acti-
vation functions. The mathematical background, the procedures
for training and testing the ANNs, and account of its history can
be found in a text by Haykin [18]. The neurons are connected to
each other by weighted links over which signals can pass. Each
neuron receives multiple inputs from other neurons in proportion
to their connection weights and biases and generates a single
output, which may be propagated to several other neurons [19–
20]. The non-linear mapping capability and the fact that the
neurons are massively connected enable the ANNs to estimate any
function without the need of an explicit mathematical model of
the physical phenomenon.

Each neuron j in the ith layer (except in the input layer) is
connected with all the neurons of the (i� 1)-th layer with a bias ðbi

jÞ
and through weights ðwi

jkÞ. k denotes the neuron of (ii� 1)-th layer.
The total number of neurons in layer i is nj and the transfer function
for layer i and neuron j is f i

j . In each layer, the value of the neuron j is
calculated by:

ai
j ¼ f i

j

 Xni�1

k¼1
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jk � ai�1
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j
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2.1. ANN architecture

The architecture of a neural network gives the description of
the suitable number of layers which the network has, the number
of neurons in each layer, the transfer function used in each layer,
and how the layers are connected to each other. Each input is
multiplied by a connection weight. In the simplest case, the
products and biases are simply summed, then transferred through
a transfer function to generate a result and finally, the output is
obtained. Networks with biases can represent relationships
between input and outputs more easily than networks without
biases [18].

The configuration of the ANN is set by selecting the number of
hidden layers and the number of nodes in these hidden layers,
since the number of nodes in the input and output layers is
determined from physical variables. In fact, the capability of
three-layer network to approximate any continuous function has
been proved [21,22]. Furthermore, the greater number of hidden
layers, the more error transfers steps, which lead of course to the
decrease of the generalization. So, this study first considers three-
layer networks (one hidden layer). In selecting the optimum
network parameters (learning rate, momentum coefficient,
neuron number in hidden layer and iteration number). The
program looks for the conditions where the root-mean square
error (Eq. (4)) is minimum. During the learning, the error is
estimated by mean square error (MSE) and the correlation coef-
ficient (R2) is defined as follows:

MSE ¼

0
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where t is the target (actual) value, p is the output (predictive) value
and n is the number of patterns.
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Fig. 2. Training result based on the (7–9–1) configuration.
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To determine the optimum network parameters, the learning
rate (the rate at which the network learns) and momentum
coefficient values are examined. The momentum coefficient is
used to allow the network to avoid setting in local minima error
(root-mean square error, MSE). Local minima in the MSE do not
represent the best set of weight and bias factors and the global
minimum does. Also, the neuron number in the hidden layer is
tested between 2 and 12 and mean square error is calculated for
each of them. After many trials optimum network parameters are
found; the learning rate is 0.75 and momentum coefficient is 0.85
and the neuron number at hidden layer is 9. Therefore, the
configuration 7–9–1 appeared to be the most optimal topology
for this application.

2.2. Training algorithm

There are different learning algorithms. A popular algorithm is
the back propagation (BP) algorithm [23], which has different
variants. Standard back propagation is a gradient descent algo-
rithm. It is very difficult to know which training algorithm will be
the fastest for a given problem. By comparison, TRAINBR is found to
be the best training algorithm in this case. Details about the algo-
rithm can be seen in the help files of MATLAB 7.0 [23]. An ANN with
a back propagation algorithm learns by changing iteratively the
weights, and biases. These changes are stored as perception infor-
mation, or knowledge.

The iteration process is ended at one of the following three
conditions: (a) training error reaches an expected value such as
0.00001; (b) gradient reaches the minimal value; (c) number of
iteration reaches a set value such as 3000.

2.3. Transfer functions

A transfer function generally consists of either linear or
nonlinear algebraic equation [24]. There are three kinds of popular
transfer functions which can be used in BP network: log-sig, tan-
sig, and pure line. ANN models with hidden and output layers using
different combinations of the three transfer functions are investi-
gated in this work. The logistic sigmoid (log-sig) (Eq. (6)) and pure
line (Eq. (7)) are used as model’s hidden and output transfer
functions, respectively.

f ðZÞ ¼ 1
1þ e�Z ; 0 � f ðZÞ � 1 (6)

f ðZÞ ¼ Z (7)

where Z is the weighted sum and biases of input (Eq. (3))

2.4. Experimental input and output data

Experimental data for critical heat flux (Qcr) for steam–water
mixtures flowing in tubes with 250 � l � 3000 mm in length,
inside diameter 8� d� 10 mm, and wall thickness 0.75� d� 1 mm
at pressures 100 � p � 200 atm, mass velocity 3� 106 � g � 18�
106 kgm=m2 h and steam qualities (by weight) 0 � x � 40% are
used in this work [16]. The correlation (1) is selected in this work
because it was developed by Peskov et al. [16] based on the same
experimental data used in this study. Peskov shows that the error
for 679 of the point’s relative error to the correlation is between
0 and �15%. And the error for the remaining 136 points is between
�15% and �25%. Two subsets of data are used to build the ANN
model: a training set and a testing set. In order to develop
a formulation procedure for CHF (Qcr) of steam–water mixtures
flowing in tubes using ANNs, the training data set are selected in
such a way that it includes the data from all regions of a desirable
operation.
2.5. ANN training and testing

An important stage of a neural network is the training step, in
which an input is introduced to the network together with the
desired target; the weights and biases are adjusted iteratively so
that the network attempts to produce the desired output. Calcu-
lating the error between the output and the target performs this
process. This error is fed back to the network with adjusting
weights and biases according to least mean square error (MSE)
criteria. The process is continued until the network output is close
to the target. The weights and biases, after training, contain
meaningful information, whereas before training, they are random
and have no meaning. When a satisfactory level of performance is
reached, the training stops, and the network use the weights and
biases to make decision. A suitably trained and validated network
should be able to predict realistic output even when the network is
simulated with new inputs (test data). The decrease of the mean
square error (MSE) during the training process of the selected
topology is shown in Fig. 2. The regression curve of the output
variable Qcr for the training data set is shown in Fig. 3. The
correction coefficient obtained in this case is 0.999, which is very
satisfactory.
2.6. Verification of the ANN

After the training session, the network was simulated with the
test data. The regression curve of the output variable (Qcr) for the
test data set is shown in Fig. 4. It should be noted that these data
were completely unknown to the network. The correlation coeffi-
cient obtained is 0.998, which is very satisfactory. In Table 1,
a comparison is presented between the actual (experimental) Qcr

and the critical heat flux obtained by using both the developed ANN
based correlation (illustrated in the next section) and best-fit
correlation (Eq. (1)). As can be seen, the ANN based correlation
percentage error is much better than the values produced by the
correlation (1). The relative error is defined as:

Qerror ¼
QANN � QEXP

QEXP
� 100% (8)

where QANN is the value of Qcr obtained by ANN based correlation,
and QEXP is the experimental value of Qcr.



Fig. 4. Comparison of target and ANN-predicted values for critical heat flux (from
testing process).

Fig. 3. Comparison of target and ANN-predicted values for critical heat flux (from
training process).
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Mathematical formulation can now be derived from the
resulting weights, biases and the activation functions used in the
ANN. As the regression coefficients obtained from both the training
and testing of the ANNs were extremely good, it is believed that the
results obtained would be accurate.

3. ANN based correlation

Once optimum network architecture is found, the weights and
biases are used to develop the ANN based correlation. The corre-
lation estimates Qcr in terms of seven input variables (p, t, x, g, l, s, d)
as indicated before. Each input variable X is scaled up or normalized
to the range {0:1} with its mean and standard deviation as:

Xscaleup ¼
X � X

S
(9)

where:

X ¼ mean X ¼
P

X
n

(10)

S ¼ Std X ¼
P
ðX � XÞ2

ðn� 1Þ (11)

with reference to Eqs. (2) and (3) the ANN based correlation can be
expressed as follows.

The values of hidden layer neurons are:
þw2
17 � Dþ b2

1

�
þw2

27 � Dþ b2
2

�

þw2
97 � Dþ b2

9

� (12)
Using Eq. (6) and the above equations the functions f 2
1 ; f

2
2 ; f

2
3 ;.; f 2

9
can be obtained.

Similarly, the weighted sum and biases of the output layers can
be written as:

Z3
1 ¼

�
w3

11 � f 2
1 þw3

12 � f 2
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3 þw3

14 � f 2
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19 � f 2

9 þ b3
1

�
(13)

From Eqs. (7) and (13) the required Qcr can be obtained after con-
verting the normalized critical heat flux to un-normalized one
(using Eq. (9), after calculating S and X for Qcr from the training
target data).

Table 2 shows the scaled up parameters for the different given
variables. And the different weights wi

jk and biases bi
j for the

developed ANN based correlation are shown in Tables 3a and b.
In the developed ANN based correlation, the coefficient of the

input parameters are used to evaluate the summation function of
neuron j ðZi

jÞ and the activation function of neuron f i
j . These

coefficients represent the weight and bias values of the summa-
tion function of each neuron belonging to the hidden layer of the
trained network (Table 3a). For this purpose, nine equations are
developed as the neural network model has nine hidden neurons
(Eq. (12)). As well as nine log-sigmoid activation functions as
shown by function (6). In the output neuron, only one summation
function is used as only one output parameter exists which
corresponds to Qcr (Eq. (13)).



Table 2
Scale up parameters for different variables.

Variable (X) S X

p 34.90963 148.250
t 49.30193 285.492
x 0.10273 0.14969
g 4.49061� 106 9.8941� 106

l 457.9942 1226.729
d 0.9242 0.959375
d 0.129099 9.99167
Qcr 8.01965� 105 1.75091� 106

Table 3a
Weights ðwi

jkÞ and biases ðbi
jÞ for the hidden layer.

Second layer (i¼ 2)

wi
jk; k

j 1 2 3 4

1 �0.1956 �0.0166 0.2096 0.4115
2 �2.0750 �0.6912 1.7181 �0.2923
3 �1.9971 �0.6494 1.6884 �0.3334
4 �2.1942 0.8632 �1.8405 �1.0306
5 0.1459 0.1924 �0.1856 �0.1351
6 0.1463 0.2844 �0.1979 �0.1652
7 0.1940 �0.0575 �0.1926 �0.4514
8 �2.6728 1.1927 �0.7879 0.0268
9 2.4236 �0.3670 �0.3041 1.5045

Table 3b
Weights ðwi

jkÞ and biases ðbi
jÞ for the output layer.

Third layer (i¼ 3)

j wi
jk; k

1 2 3 4 5

1 184.748 6.8942 �6.7705 �0.9454 346.4331

Table 1
Comparison between actual (experimental) Qcr with that obtained by correlation (1) and ANN based correlation.

p (atm) t (�C) x g (kg/m2

h� 10�6)
l (mm) d (mm) d (mm) Qcr exper.

(kcal/m2 h)� 10�6
Qcr ANN.
(kcal/m2 h)� 10�6

Qcr Eq. (1)
(kcal/m2 h)� 10�6

% ANN errora %Correl. errora

100 232 0.004 7 400 0.75 10 3.59 3.68 4.3 �2.507 16.1
100 262.5 0.006 17.1 660 0.75 10 3.45 3.44 3.17 0.289 �8.75
100 105.5 0.198 3.6 565 1 10 3.7 3.81 2.96 �2.97 �7.3
100 301.5 0.292 6.5 890 1 10 1.51 1.49 1.37 1.325 �9.97
120 252 0 17.95 1000 0.75 10 3.48 3.49 3.58 �0.287 2.79
120 140 0.103 3.6 565 1 10 3.05 3.0 2.54 1.639 �20.02
120 273.5 0.104 14.5 1650 1 10 1.69 1.686 1.93 0.237 12.48
120 282 0.196 8.78 1650 1 10 1.17 1.2 1.29 �2.564 9.29
140 283 0.005 7.98 520 0.75 10 2.47 2.52 2.64 �2.024 6.5
140 306 0.1 11 890 0.75 10 1.72 1.78 1.93 �3.488 10.7
140 332 0.193 7.92 893 1 10 0.98 1 1.13 �2.041 13
140 283 0.335 3.31 1200 1 10 0.9 0.93 0.69 �3.333 �29.7
160 309.5 0 13.9 660 0.75 10 2.7 2.67 3.06 1.111 11.81
160 283 0.11 5.82 890 1 10 1.495 1.49 1.4 0.334 �6.8
160 330 0.19 3.6 565 1 10 0.93 0.98 0.85 �5.376 �9.9
160 335 0.233 10.27 1645 1 10 0.92 0.93 1.09 �1.087 15.88
180 313 0.018 19.3 1300 0.75 10 2.45 2.47 2.37 �1.633 �7.2
180 265 0.055 10.35 1650 1 10 1.81 1.82 1.87 �0.553 3.2
180 192 0.141 2.7 1650 1 10 0.755 0.76 0.775 �0.662 2.6
180 223.5 0.264 2.14 1650 1 10 0.58 0.565 0.48 2.586 �21.5
200 279 0.055 6.63 1650 1 10 1.15 1.13 1.03 1.739 �11.14
200 323.5 0.101 11.7 1650 1 10 1.34 1.36 1.27 �1.493 �5.16
200 341 0.208 10 1650 1 10 1.025 1.01 0.96 1.463 �6.5
200 361 0.334 13.15 1645 1 10 0.97 0.93 0.84 4.124 �15.6

a Percentage error¼ (difference/experimental Qcr)� 100.
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4. Conclusion

The capability to predict the CHF is of vital importance to the
safety of flow boiling processes. Various authors have established
different techniques and different relationships for the prediction
of CHF. The quantitative relationship between the main variables,
however, varies from one author to another. The CHF prediction
can be realized either by the table method or by best-fit method.
Modern computational capabilities and numerical optimization
techniques have limited the above two methods. ANN alternative
techniques are accepted way to tackle complex and ill-defined
problems. ANNs are able to learn key information patterns
within a multi-information domain. Therefore, it is used as
bi
j

5 6 7

�0.0660 �1.8571 �0.4553 0.2937
�0.9223 2.2153 �0.0084 1.9344
�0.7284 1.6143 0.1594 1.9595
�1.898 0.9096 0.484 1.1489

0.0371 1.8357 0.1191 1.6052
0.1031 1.5721 �0.0253 1.8265
0.0656 �2.4797 0.0213 1.7267
1.5786 �1.1333 0.0675 �4.7763
�0.6759 1.1543 �0.1257 3.7093

bi
j

6 7 8 9

�161.8427 149.9146 2.1724 �2.5602 �330.9704
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a predictor of CHF based on the available database without
knowing their best-fit correlations due to ANNs black-box char-
acteristics. The developed ANN is applied to develop an ANN
based correlation for estimating the CHF (Qcr) for flow of steam–
water mixtures through pipes. The feed forward neural network
(using the back propagation (BP) technique) is used in this study.
Some statistical methods, such as the root-mean square (MSE)
and the correlation coefficient (R2) are applied. The optimum
network parameters are obtained after many trials. These
parameters include the learning rate of 0.75, momentum coeffi-
cient of 0.85 and the neuron number at hidden layer is 9.
Therefore, the configuration 7–9–1 is the most optimal topology
for this problem. The proposed ANN model structure (with nine
neurons in the hidden layer) is capable of predicting the target
Qcr. Experimental results of Qcr are compared with both the
results obtained by the developed ANN based correlation and
a best-fit correlation. Deviations between the results are found to
be less than 5.5% and 30%, respectively.

The use of the developed formula, which can be employed
with any programming language or spreadsheet program for
estimating Qcr, as described in this paper, may make the use of
dedicated ANN software unnecessary to carry out in each training
time. An advantage of the method is the straight forward
modeling (with no loops) that can easily be incorporated into any
programming language or spreadsheet. Also, as more experi-
mental data are available in the future, these can be used to enrich
the training database and return the networks in order to increase
the prediction accuracy and possibly extend the range of appli-
cability of the model.
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